

Выпрямитель Flex Kraft

Одинарный выход, 250 – 30000 А

Новое поколение выпрямителей Flex Kraft с использованием высокочастотной техники с уникальными модульными свойствами для агрессивных условий гальванического производства. Компактный и модульный дизайн представляет много преимуществ для гальваника.

Гибкость

Выбор выпрямителя по мощности дает возможность широкого использования спектра напряжений и токов.

Модернизация

Модульный дизайн позволяет модернизировать исходя из требуемой мощности.

Обслуживание

Лёгкий доступ в случае ремонта модуля или его замены.

Экономия места

Небольшая требуемая площадь для установки выпрямителя значительно упрощает монтаж. Модульная конструкция позволяет принимать разнообразные проектные решения.

Высокий коэффициент мощности

Низкая реактивная составляющая мощности по сравнению с тиристорными выпрямителями.

Пульсация

Очень низкая пульсация при любых выходящих токах.

Расширенные возможности

Посредством комбинирования модулями и стойками, Flex Kraft может максимально выдавать напряжение до 120 Вольт или ток до 30000 Ампер.

Конструкция выпрямителя **Flex Kraft** позволяет обеспечить оптимальную работу и выносливость в агрессивных производственных условиях. Конструкция основана на технологии первичного переключения. Выпрямитель состоит из 1-10 модулей, которые вместе с модулем управления составляют комплектное изделие.

СИСТЕМА КОНТРОЛЯ И УПРАВЛЕНИЯ

Стандартные контрольные интерфейсы:

Цифровой дисплей и клавиатура внутри контрольного

модуля

Модбус RTU / RS-485 Профибус DP / RS-485

Контрольные параметры процесса

Входные параметры Выходные параметры

Входящий ток Текущий ток

Входящее напряжение Текущее напряжение

Включен/выключен Сигнал рабочего состояния

Старт/Стоп Сигнал работы Готовность/Пуск Время работы Ампер-часы Отработанное время

Время работы Сигнал тревоги (Общий) Обнуление счетчика Статус сигнала тревоги (причина сигнала тревоги)

Конец процесса

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ

Потребляемое $3 \times 380 - 480 \text{ B} \pm 10\%, 50 - 60 \Gamma \mu$ напряжение: $3 \times 200 - 240 \text{ B} \pm 10\%, 50 - 60 \Gamma \mu$

при максимальном выходном напряжении 14

Вольт

ЕМС-Сертификат В соответствии с EN 61000-6-4, Эмиссия, и EN

соответствия: 61000-6-2, Иммунитет

LVD-Сертификат

 соответствия:
 В соответствии с EN 50178

 Класс защиты:
 IP 32 (за исключением вентилятора)

 КПД:
 ≥0.93 @ от расчётной нагрузки

Коэффициент

мощности: 0,9 от расчетного

Темп. Окруж. среды: Макс. 40 °C, в отдельных случаях до 50°C

 Охлаждение:
 Принудительное воздушное

 Влажность:
 Макс. 85% относительная

 Масса:
 Около 25 кг на модуль

 Точность замера:
 Напряжение/ток < ± 1%</td>

Пульсация: < 1% от расчетного рабочего тока при

постоянном токе в полном диапазоне измерений

регулирования: Плавное регулирование при постоянном токе или напряжении от 0 до 100%

Условия

Лиапазон

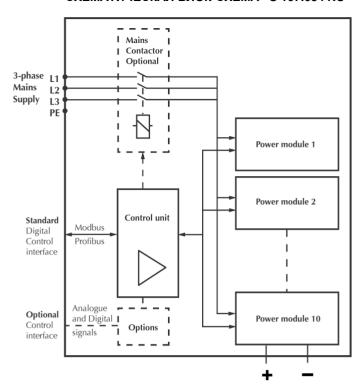
 эксплуатации:
 Непрерывная эксплуатация при расчетной нагрузке

 Защита от:
 Нарушений функций модулей, таких как:

Превышения по току Превышения по напряжению Превышения по температуре Короткое замыкание

Размыкание цепи

И други


СПЕЦИФИКАЦИЯ ВЫХОДНЫХ ДАННЫХ/ СТАНДАРТНЫЕ ПАРАМЕТРЫ

Количество силовых модулей ⇒

B/A	1	2	3	4	5	6	7	8	9	10
0-12 B	600	1200	1800	2400	3000	3600	4200	4800	5400	6000
0-15 B	500	1000	1500	2000	2500	3000	3500	4000	4500	5000
0-24 B	300	600	900	1200	1500	1800	2100	2400	2700	3000
0-30 B	250	500	750	1000	1250	1500	1750	2000	2250	2500
Bec (kг)	49	76	102	133	160	188	220	252	286	315
Высота(мм)	450	590	730	870	1010	1290	1430	1570	1710	1850

Размер выпрямителя: Ширина = 500 мм, Глубина = 610 мм, включая медную шину на задней стороне .

СХЕМАТИЧЕСКАЯ БЛОК-СХЕМА S 107.034 RU

ОПЦИИ

- Блок дистанционного управления «базовый вариант» с аналоговыми или цифровыми приборами, потенциометрами и т.д.
- RS-232C интерфейс для контроля <u>одного</u> выпрямителя.
- Аналогово-цифровой интерфейс ввода/вывода. Два входящих и два выходящих сигнала 0-10В постоянного тока и два входящих и два выходящих сигнала 24В постоянного тока. Стандартная конфигурация: Iset, Uset, Iact, Uact: 0-10В постоянного тока, ON/OFF, BLOCK/RUN, POWER ON, ALARM цифровые сигналы 24В постоянного тока.
- Аналоговый интерфейс ввода-вывода с четырьмя входами и четырьмя выходами 0/4-20мА. Гальванически изолированный. Стандартная конфигурация: Iset, Uset, Iact, Uact: 4-20 мА Цифровой интерфейс ввода/вывода с четырьмя входами и
- цифровой интерфеис ввода/вывода с четырымя входами и четырьмя выходами. Цифровые сигналы 24В постоянного тока. Два специальных пользовательских программируемых ввода и два вывода (свободное от напряжения реле), 24В переменного тока 1A; или 24В постоянного тока 1A. Стандартная конфигурация ON/OFF, BLOCK/RUN, POWER ON, ALARM
- Функция повышения/понижения
- ПО для импульсной работы и управления последовательностью процесса
- Контактор. Предназначен для прекращения подачи энергии к силовым блокам. Контактор устанавливается в блоке управления.
- Внешний референсный шунт, 60 мВ
- Реверс
- Выпрямители, изготовленные в соответствии с индивидуальными требованиями заказчика.

